首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   21篇
  国内免费   29篇
电工技术   4篇
综合类   19篇
化学工业   91篇
金属工艺   98篇
机械仪表   232篇
建筑科学   1篇
矿业工程   1篇
能源动力   15篇
轻工业   2篇
石油天然气   1篇
武器工业   2篇
无线电   48篇
一般工业技术   108篇
冶金工业   6篇
原子能技术   1篇
自动化技术   87篇
  2024年   2篇
  2023年   46篇
  2022年   28篇
  2021年   52篇
  2020年   41篇
  2019年   16篇
  2018年   12篇
  2017年   29篇
  2016年   33篇
  2015年   32篇
  2014年   27篇
  2013年   48篇
  2012年   55篇
  2011年   49篇
  2010年   19篇
  2009年   30篇
  2008年   20篇
  2007年   56篇
  2006年   49篇
  2005年   12篇
  2004年   10篇
  2003年   8篇
  2002年   16篇
  2001年   6篇
  2000年   7篇
  1999年   10篇
  1998年   3篇
排序方式: 共有716条查询结果,搜索用时 15 毫秒
1.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
2.
To elucidate the crystal growth process of hematite in high-temperature lead-free multicomponent alkali borosilicate glass, which is essentially important to control the color of red overglaze enamels, frit and hematite mixture is heat-treated and subjected to microscopic observations. Hematite particles slightly grew due to sintering at low temperature. Once the glass matrix formed near the softening point of frit, hematite dissolved into glass fluid. Hematite crystal growth concomitantly ensued with decrease in the number of hematite particles via Ostwald ripening as the temperature increased. The grown particles exhibited an anisotropic morphology with straight outlines reflecting crystal planes, the morphology of which is completely different from those grown by sintering and particles prior to heating. These results suggest that comprehensive understanding of frit and hematite from the perspectives of glass science and chemistry as well as powder technology are important to truly control the color of red overglaze enamels.  相似文献   
3.
The delayed failure of SiC fibrous reinforcement has continuously been investigated to warrant the long term performances of Ceramic Matrix Composite (CMC). Chiefly assessed on multifilament tow samples to alleviate some handling difficulties, subcritical crack growth (SCG) parameters are however ruled by structural artifacts which hinder the identification of intrinsic filament behavior. In this paper, we propose to estimate the true filament parameters for 5 fiber types from bundle behavior using a recently communicated Monte Carlo algorithm integrating flaw and stress distributions through a deterministic fracture mechanics law under Paris’ formulation. So computed tow lifetime are broadly dispersed, encompassing raw data, and show a structure-dependent scale effect, revealed by nfilament>ntow where n is the stress exponent. The relationship between SCG coefficient and chemical composition of the substrate is discussed and highlights the major effect of doping elements (Ti or Zr), oxygen or hydrogen content.  相似文献   
4.
The present work was focused on the corrosion properties and contact resistance behavior of poly(orthophenlyenediamine) (PoPD) coating on 316L SS bipolar plates. To reduce the corrosion rate and increase the interfacial conductivity of 316L SS bipolar plates, PoPD coating was deposited using an electropolymerization technique by the various monomer concentration of orthophenlyenediamine (oPD) on its surface. The presence of 1, 2, 4, 5- tetra substituted benzene nuclei of phenazine units in the polymer coating was confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy analysis has confirmed the (%) of chemical composition in PoPD coating. The results of scanning electron microscopy analysis revealed that the uniform and compact coating with complete cover on 316L SS. The corrosion properties were investigated in 0.5 M H2SO4 and 2 ppm HF solution at 80 °C. The polarization test results showed that the PoPD coating reduced the corrosion current density both in the PEMFC anode and cathode environments. The charge transfer resistance values were in the order of 316L SS ? 0.02 M PoPD ? 0.06 M PoPD ? 0.04 M PoPD. A very low interfacial contact resistance and good adhesion strength was observed for 0.04 M PoPD coating. The higher contact angle of 0.04 M PoPD coating explained the hydrophobic property and more benefit of water management in the PEMFC environment. The results of the analysis of total metal ion releases clearly explained that the low level of metal ions released for 0.04 M PoPD coating. The overall studies revealed the PoPD coating with optimized 0.04 M oPD concentration showed best performance and provided more anodic protection to 316L SS bipolar plates.  相似文献   
5.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
6.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
7.
The present work demonstrates a pressure-less and reliable joining technique for alumina ceramics through a reaction-bonded aluminum oxide (RBAO) method. Effective joining relies on the RBAO mechanism, in which Al particles are converted to alumina through oxidation and bond with alumina particles from the parts to be joined upon sintering. Alumina ceramics in a green state were successfully joined with the use of an Al/Al2O3 powder mixture as an interlayer. The oxidation behavior of the Al particles was confirmed by thermogravimetry and X-ray diffraction analyses. Joining was performed in ambient air at 1650 °C for 2 h without applying any external pressure. Microstructural observations at the joining interfaces indicated a compact joining. The joining strengths were assessed by determining the biaxial strengths at room temperature, and the joined samples exhibited no fractures at the joining interfaces. Moreover, the joints had a strength of almost 100 % when compared with those of the parent alumina ceramics.  相似文献   
8.
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs.  相似文献   
9.
《Ceramics International》2020,46(10):15915-15924
To reduce the friction coefficient of WC-17Co wear-resistant coatings, Graphene oxide were used to mix with WC-17Co powder. The SEM, EDS and Raman results were used to analyze the morphology and phase composition of graphene oxide in the powder and coating obtained by plasma spraying processes. The mechanical properties of the coatings were studied by using a microhardness tester and a universal testing machine. The friction and wear properties of the coatings were studied by using a UMT-2 friction and wear tester. The results show that among the pulverization processes, the spray granulation process can achieve a stronger and more uniform adhesion of graphene oxide on the surface of WC-17Co particles, and the graphene oxide content in the coating is higher. Graphene is still embedded in the coating as transparent, thin sheets. The bonding strength is approximately 63 MPa, the hardness is approximately 931 HV0.1, and the friction coefficient of the graphene oxide coating is reduced by approximately 22% compared to that of the coating without graphene. The formation of lubrication films in the micro-area improves the self-lubrication and antiwear effects.  相似文献   
10.
In the double-sided polishing process of silicon wafers, there is a strong demand to reduce amount of edge roll-off (ERO) while improving global flatness of a wafer. In the present study, we clarified the negative effects of uneven wear of the polishing pads on the global flatness of a wafer can be suppressed when the deformation of the polishing pads is large. As for the ERO, we found small deformation of the polishing pad near the top surface was effective in reducing the amount of ERO. In addition, we revealed small distance from the surface of the polishing pad at the area under the wafer to that at the area around the wafer was also effective in reducing the amount of ERO. On the basis of the findings, we developed a three-layered polishing pad which was expected to reduce the amount of ERO while achieving the good global flatness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号